Neurogenin-3 (NGN3) is a protein that in humans is encoded by the Neurog3 gene.

Aliases NEUROG3, Atoh5, Math4B, NGN-3, bHLHa7, ngn3, neurogenin 3
External IDs OMIM: 604882MGI: 893591HomoloGene: 40692GeneCards: NEUROG3
Gene location (Human)
Chr. Chromosome 10 (human)[1]

Band 10q22.1 Start 69,571,698 bp[1]
End 69,573,422 bp[1]
Gene location (Mouse)
Chr. Chromosome 10 (mouse)[2]

Band 10|10 B4 Start 62,133,090 bp[2]
End 62,134,763 bp[2]
RNA expression pattern
Top expressed in
  • duodenum
  • hippocampus proper
  • small intestine
  • transverse colon
  • esophagus
More reference expression data
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Species Human Mouse









RefSeq (mRNA)



RefSeq (protein)



Location (UCSC) Chr 10: 69.57 – 69.57 Mb Chr 10: 62.13 – 62.13 Mb
PubMed search [3] [4]
View/Edit Human View/Edit Mouse

Neurogenin-3 is a pro-endocrine transcription factor that is a member of the basic helix-loop-helix (bHLH) transcription factor and has a primary function of activating gene transcription in endocrine progenitor cells.[5] It is a master regulator of pancreatic islet differentiation and regeneration[6] and functions to directly enhance the expression of the lineage-committed transcription factors required for the differentiation of the endocrine progenitor cells into each of the endocrine cell subtypes.[6]

. . . Neurogenin-3 . . .

Neurogenin3 is expressed in a small percentage of cells within the developing pancreas consisting of endocrine progenitor cells.[6] It is expressed in the three stages of the development and differentiation of the endocrine pancreas. These stages are termed the

  1. First or primary transition stage which involves the specification and growth of a primitive stalk of primarily undifferentiated pancreatic epithelial cells, originating from two separate sites along the gut tube which later fuse to become a single organ.
  2. Second transition stage which is the period when the majority of endocrine cell differentiation occurs and the growing stalk of uncommitted pancreatic progenitors undergoes a branching morphogenesis and extensive endocrine and exocrine cytodifferentiation occurs and finally.
  3. Third transition stage where the individual differentiated endocrine cells (α,β,δ and PP cells) migrate away from the progenitor cell domain at the core of the developing pancreas and coalesce into islets of Langerhans([7][8]).

The significance of NGN3 in endocrine cell development is shown by the fact that Neurog3 deficiency prevents the generation of all pancreatic and intestinal endocrine cells([9][10]). Interestingly, ectopic overexpression of Neurog3 leads to reduced endocrine mass as well, but by a mechanism that is different from that of Neurog3 deficiency.[11] Overexpression of Neurog3 throughout the uncommitted pancreatic progenitor domain induces premature differentiation of the progenitor cell population into the endocrine lineage, effectively depleting the pool of multi-potent progenitor cells prior to their expansion resulting in a reduction in the overall mass of pancreatic endocrine tissue.[6] These data point at a tight regulation of Neurog3 expression to maintain the proper size and cell composition of the endocrine pancreas.

Genetic mutations in Neurogenin3 have been often found to cause neonatal diabetes[12] and the significance of neurogenin3 has also been further shown using invitro analysis where neurogenin3 was found to required for the development of mature human beta cells from pluripotent stem cells.[12]

Neurogenin-3 is required for the development of endocrine pancreatic precursors for the four pancreatic endocrine cell types composed in the Islets of Langerhands: α-, β-, δ-, and pancreatic polypeptide (PP) cells, which produce the hormones glucagon, insulin, somatostatin, and PP respectively.[13]

Neurogenin-3 producing cells are is located within or adjacent to the pancreatic ducts, which are thought to produce endocrine precursors.[14]

In the absence of Neurogenin-3, expression of ISL1, PAX4, PAX6, and NeuroD are lost and endocrine precursors are lacking in the pancreatic epithelium. Neurogenin-3 absence also results in the absence of both insulin and glucagon detected normally at stages E15.5 and E9.5 in mouse embryos.[13]

Tissues lacking Neurogenin-3 result in an abnormal exocrine tissue phenotype nearly identical to that of tissues with the loss of NeuroD expression.[15] This phenotype is composed of abnormal cell polarity with nuclei having random positions and an abundant accumulation of Acinar Cells and Zymogen granules.[13]

. . . Neurogenin-3 . . .

This article is issued from web site Wikipedia. The original article may be a bit shortened or modified. Some links may have been modified. The text is licensed under “Creative Commons – Attribution – Sharealike” [1] and some of the text can also be licensed under the terms of the “GNU Free Documentation License” [2]. Additional terms may apply for the media files. By using this site, you agree to our Legal pages . Web links: [1] [2]

. . . Neurogenin-3 . . .

© 2022 The Grey Earl INFO - WordPress Theme by WPEnjoy