Romer’s gap

Romer’s gap is an example of an apparent gap in the tetrapodfossil record used in the study of evolutionary biology. Such gaps represent periods from which excavators have not yet found relevant fossils. Romer’s gap is named after paleontologistAlfred Romer, who first recognised it.[2][3] Recent discoveries in Scotland are beginning to close this gap in palaeontological knowledge.[4][5]

Gap in the tetrapod fossil record
Romer’s gap
360 
355 
350 
345 
340 
335 
330 
325 
320 
315 
310 
305 
300 
295 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
R
o
m
e
r

s

G
a
p

9
10
15
14
14
13
13
12
1
2
3
7
8
11
6
16
17
18
19
4
5
Axis scale: millions of years ago.

  Known fossil ranges.
 Ghost lineages.


1: “Anthracosauria2: Temnospondyli3: “Microsauria4: Seymouriamorpha5: Diadectidae6: Nectridea7: Aistopoda8: Amniota9: Baphetidae10: Colosteidae11: Gephyrostegidae12: Casineria13: Crassigyrinus14: Whatcheeriidae15: Adelogyrinidae16: Ventastega17: Ichthyostega18: Acanthostega19: Tulerpeton

References: Smithson et al. (2012)[1]

. . . Romer’s gap . . .

Romer’s gap ran from approximately 360 to 345 million years ago, corresponding to the first 15 million years of the Carboniferous, the early Mississippian (starting with the Tournaisian and moving into the Visean). The gap forms a discontinuity between the primitive forests and high diversity of fishes in the end Devonian and more modern aquatic and terrestrial assemblages of the early Carboniferous.[6][7]

Crassigyrinus, a secondarily aquatic non-amniote tetrapod from Romer’s gap

There has been long debate as to why there are so few fossils from this time period.[6] Some have suggested the problem was of fossilization itself, suggesting that there may have been differences in the geochemistry of the time that did not favour fossil formation.[6][7][8] Also, excavators simply may not have dug in the right places. The existence of a true low point in vertebrate diversity has been supported by independent lines of evidence,[6][7][9] however recent finds in five new locations in Scotland have yielded multiple fossils of early tetrapods and amphibians. They have also allowed the most accurate logging of the geology of this period. This new evidence suggests that – at least locally – there was no gap in diversity or changes in oxygen geochemistry.[4]

While initial arthropod terrestriality was well under way before the gap, and some digited tetrapods might have come on land, there are remarkably few terrestrial or aquatic fossils that date from the gap itself.[6][7][8][10] Recent work on Paleozoic geochemistry has provided evidence for the biological reality of Romer’s gap in both terrestrial vertebrates and arthropods, and has correlated it with a period of unusually low atmospheric oxygen concentration, which was determined from the idiosyncratic geochemistry of rocks formed during Romer’s gap.[6] The new sedimentary logging in the Ballagan Formation in Scotland challenges this, suggesting oxygen was stable throughout Romer’s Gap.[4]

Aquatic vertebrates, which include most tetrapods during the Carboniferous,[8][10] were recovering from the end-Devonian extinction, a major extinction event that preceded Romer’s gap, one on par with that which killed the dinosaurs.[7] In this Hangenberg event, most marine and freshwater groups became extinct or were reduced to a few lineages, although the precise mechanism of the extinction is unclear.[7] Before the event, oceans and lakes were dominated by lobe-finned fishes and armored fishes called placoderms.[7] After the gap, modern ray finned fish, as well as sharks and their relatives were the dominant forms.[7] The period also saw the demise of the Ichthyostegalia, the early fish-like amphibians with more than five digits.[7][8]

The low diversity of marine fishes, particularly shell-crushing predators (durophages), at the beginning of Romer’s gap is supported by the sudden abundance of hard-shelled crinoid echinoderms during the same period.[9] The Tournaisian has even been called the “Age of Crinoids”.[11] Once the number of shell-crushing ray-finned fishes and sharks increased later in the Carboniferous, coincident with the end of Romer’s gap, the diversity of crinoids with Devonian-type armor plummeted, following the pattern of a classic predator-prey (Lotka-Volterra) cycle.[9] There is increasing evidence that lungfish and stem tetrapods and amphibians recovered quickly and diversified in the rapidly changing environment of the end-Devonian and Romer’s Gap.[4]

. . . Romer’s gap . . .

This article is issued from web site Wikipedia. The original article may be a bit shortened or modified. Some links may have been modified. The text is licensed under “Creative Commons – Attribution – Sharealike” [1] and some of the text can also be licensed under the terms of the “GNU Free Documentation License” [2]. Additional terms may apply for the media files. By using this site, you agree to our Legal pages . Web links: [1] [2]

. . . Romer’s gap . . .

© 2022 The Grey Earl INFO - WordPress Theme by WPEnjoy